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Subdiffusion in a bounded domain with a partially absorbing-reflecting boundary
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The exit time of a subdiffusive process from a bounded domain with a partially absorbing/reflecting bound-
ary is considered. The short-time and long-time behaviors of the exit time probability density are investigated
by using a spectral decomposition on the basis of the Laplace operator eigenfunctions. Rotation-invariant
domains are analyzed in depth in order to illustrate the use of theoretical formulas and to compare them to
numerical simulations. The asymptotic results obtained are relevant for describing subdiffusion inside a living
cell with a semipermeable membrane, in a chemical reactor filled with catalytic grains of finite reactivity, or in
mineral or biological samples which are probed by nuclear magnetic resonance measurements subject to

surface relaxation.
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I. INTRODUCTION

Anomalous diffusion, for which the mean-square
displacement of a particle grows sublinearly in time,
([x(£)=x(0)]?y < 1%, became a generic feature of many com-
plex systems. Examples can be found in various fields rang-
ing from biophysics (e.g., transport of large molecules in
living cells [1,2]), to geophysics and ecology (e.g., tracer
diffusion in subsurface hydrology [3]). Crowding and cag-
ing, geometrical traps and energetic barriers, and many other
mechanisms may lead to long-tailed waiting time distribu-
tions which result in a sublinear growth of the mean-square
displacement [4—10].

In many practical situations, the dynamics is not only
slowed down, but particles are restricted by a boundary of a
confining domain. For example, a semipermeable cellular
membrane englobes the content of a living cell (proteins,
macromolecules, etc.) leaving a possibility for an exchange
with the extracellular space [11-13]; a catalytic surface en-
ables for arriving species to be chemically transformed
[14-18]; an interface between solid/void phases in mineral
samples and biological tissues causes surface relaxation in
nuclear magnetic resonance (NMR) experiments [19]. The
functioning of a biological system, the efficiency of a chemi-
cal reactor and the signal amplitude in an NMR measurement
depend on how long a particle remains inside a confining
domain, before being transferred, chemically transformed or
relaxed.

Many theoretical, numerical and experimental studies
concerned the first-passage time for normal diffusion
[20-27]. Recently, several groups investigated this question
for subdiffusion. Lua and Grosberg studied the first-passage
times for a particle, executing one-dimensional diffusive and
subdiffusive motions in an asymmetric sawtooth potential, to
exit one of the boundaries [28]. Yuste and Linderberg com-
puted the asymptotic survival probability of a spherical target
in the presence of a single subdiffusive trap or surrounded by
a sea of subdiffusive traps [29]. Condamin and co-workers
derived a relationship between the moments of the first-
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passage time for normal diffusion and the first-passage time
density for subdiffusive processes [30,31]. They gave ex-
plicit evaluation of the first-passage time distribution for
general three-dimensional bounded domains, with a special
focus on targer search problems. All these studies concerned
the first-passage time when a subdiffusive process is stopped
after the first encounter with a boundary (e.g., a target). Such
a boundary is called “perfectly absorbing:” once a particle
arrives onto the boundary, it is immediately transferred, re-
acted or relaxed, i.e., the corresponding surface permeability,
reactivity or relaxivity is infinite.

We consider a more general case of partially absorbing/
reflecting boundaries which are relevant for various applica-
tions [32-40]. Once a particle approached such a boundary,
it may either interact with the boundary (via adsorption,
transfer, chemical transformation, relaxation, etc.), or to be
reflected back towards the bulk to continue its motion. Since
the particle may not interact with the boundary at their first
encounter, the particle would remain longer inside a confin-
ing domain. The focus is now not on the first-passage time,
but on the last-passage time when a particle is finally trans-
ferred, reacted or relaxed with a finite permeability, reactivity
or relaxivity. In biology, the last-passage time is equivalent
to the exit time which describes how long a particle remains
in a cell prior to its transfer through a semipermeable cellular
membrane. In chemistry and NMR applications, the last-
passage time is the moment when a species is chemically
transformed or relaxed on the surface. In what follows, we
shall speak about exit times, keeping in mind other interpre-
tations of the last-passage time. How does the surface per-
meability influence the distribution of exit times? May the
shape of a confining domain change this distribution? What
is the role of the exponent « characterizing the subdiffusive
process? The aim of the present paper is to answer these
questions.

In Sec. II, the survival probability of a particle subdiffus-
ing inside a bounded domain is calculated. The time deriva-
tive of the survival probability is the probability density of
the exit time from the domain (the first-passage time appear-
ing as a limiting case). The computation relies on a spectral
decomposition of a subdiffusive propagator on the basis of
the Laplace operator eigenfunctions. This general though for-
mal representation allows one to separate time and space
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dependences. The short-time and long-time asymptotic be-
haviors of spectral decompositions are analyzed, with a spe-
cial emphasis on comparison between normal diffusion
(@=1) and subdiffusion (0<a@<1). In Sec. III, explicit for-
mulas for the exit time probability density are derived in the
case of rotation-invariant (or spherical) domains. Numerical
results are presented in Sec. IV for rotation-invariant and
rectangular domains. The role of a finite permeability, reac-
tivity or relaxivity is outlined and the consequences of the
short-time behavior are discussed. Some technical details
and further discussions are grouped in Appendixes.

II. GENERAL DOMAINS
A. Subdiffusive propagator

In the framework of continuous-time random walks
(CTRWs) or fractional Fokker-Planck equation (FFPE), a
subdiffusive process with an exponent 0 <a =1 is described
by a propagator G;(r,r) that is the probability for a particle
which started from r at time O to be found in a vicinity of r
at a later time 7. In absence of external forces or fields, the
time evolution of the propagator is governed by a fractional
diffusion (or heat) equation [5,9],

J - a
EG?(FO,I‘) = Da ODtl ArGt (I'(),I‘), (1)

where A,=A=/7+...+¢#/J; is the d-dimensional
Laplace operator, and D, is a generalized diffusion coeffi-
cient (in units m?/s®). Memory effects of a subdiffusive pro-
cess are introduced through the Riemann-Liouville fractional
differential operator ODtl"“ [41,42],

dﬁ%@=lzﬁfmuﬁgL- (2)

0 (t_tr)l—a’

which is defined for any sufficiently well-behaved function
g(t) (I'(z) is the Gamma function). The evolution starts from
a pointlike source at ry

GL(rg,r) = &r — 1), (3)

8(r—rg) being the Dirac distribution. It is worth noting that
fractional diffusion equation is not unique model which re-
sults in a sublinear growth of the mean-square displacement.
Fractional Brownian motion, normal diffusion on fractal sets
and other mechanisms which may also yield “anomalous”
(sublinear) diffusion, are not considered in this paper.

When the motion of a particle is restricted by a boundary
dQ of a diffusion-confining domain (), an appropriate
boundary condition should be imposed. A partially
absorbing/reflecting boundary is often described by Robin
(also known as radiation, Fourier, third, etc.) boundary con-
dition which is a linear combination of Dirichlet and Neu-
mann boundary conditions [14,32-34],

J
AO_’—G,“(rO,r) +Gl(rp,r)=0 (r e 0Q)), (4)
n

where A is a positive parameter, and d/dn is the normal
derivative on the boundary pointing towards the exterior of a
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confining domain. Eq. (4) is a form of a mass conservation
law when the diffusive flux toward the boundary is equal to
the flux across the boundary. Collins and Kimball introduced
the Robin boundary condition in order to describe partially
diffusion-controlled reactions [14], while Seki et al. [43] and
later Eaves and Reichman [44] justified this condition for
subdiffusion. The positive parameter A which is homoge-
neous to a length, is the ratio between the bulk and surface
transport coefficients: A=D,/W,, W, being the (general-
ized) surface permeability, relaxivity or reactivity (although
A may depend on a, we keep writing A instead of A,).

In the limiting case A=0, one retrieves Dirichlet bound-
ary condition for a perfectly absorbing boundary. The oppo-
site case of A= corresponds to Neumann boundary condi-
tion for a perfectly reflecting boundary. The length A
controls the balance between these limits or, equivalently, the
balance between absorptions and reflections. Although some
more sophisticated boundary conditions may sometimes be
required in order to describe surface exchange processes
[45-47], our focus is specifically on Robin boundary condi-
tion (4).

For a bounded domain, a propagator G (ry,r) can be
written in the form of a spectral decomposition [5]

Gta(ro’r) = 2 Ea(_ Da)\mta)u;(r())um(r) 5 (5)
m=0

where the asterisk denotes a complex conjugate, and the
Laplace operator eigenfunctions u,,(r) and eigenvalues A,
(m=0,1,2,...) are defined as

Au,,(r) + Nu,(r)=0 (r € Q),

AL )+, (1)=0 (re o). ©)
on

The eigenvalues \,, are positive and conventionally ordered:
0=Ny=\,=\,=..., while the eigenfunctions u,,(r) are or-
thonormal [48],

f dr an(l')l/im’(r) = 5m,m’ >
Q

6, being the Kronecker delta symbol.
The Mittag-Leffler function E,(z) in Eq. (5) is defined
either by a Taylor series [49],

o0

Zk
@@=EN%+W

or as a solution of the fractional differential equation,

J o l-a o
_EEa(_t )=0Dz Ea(_t )

For a=1, one gets E;(z)=¢% and Eq. (5) is a classical spec-
tral decomposition of a propagator for normal diffusion,
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G/(ro.r) = 2 e ™us (ro)u,, (r). (7
m=0

Note that Egs. (5) and (7) exhibit identical spatial depen-
dences, in agreement with the fact that subdiffusion and dif-
fusion can be related by changing a “time clock” (the opera-
tion known as “subordination” [50-55]).

B. Exit times

For a subdiffusive process with an exponent «, we denote
T, the exit time from a bounded domain () with a partially
absorbing/reflecting boundary dQ). T, is a random variable
whose probability density ¢,(r,7) depends on the shape of
), the starting point r, the exponent « and the length A. We
first consider the survival probability Q,(r,7) that a particle
which started from r at time 0 is survived until time #:
0,(r,1)=P{T,> t}. The survival probability is simply the in-
tegral of a propagator G;(r,r’) over the arrival points
r’ € Q. In turn, the probability density g,(r,f) is the time
derivative of Q,(r,?),

qa(r’t):_%Qa(r’t):fgdr,(_ (S%Gta(l',l',)). (8)

The spectral decomposition (5) yields

[

qa(r7t) = E <_ ﬁEa(_ Da)\mta)>u:l(r)J dr,um(r,)-
at 0

m=0
)

This is a general, though formal, spectral decomposition for
the exit time probability density. The main advantage of Eq.
(9) is that the dependences on the time ¢, the exponent «, and
the starting point r are separate. For instance, the dependence
on the starting point r is represented by the same eigenfunc-
tions u,,(r) for all subdiffusive processes (any « between 0
and 1, including normal diffusion with @=1). These eigen-
functions enter in Eq. (9) with different “weights” depending
on .

C. Exit times for normal diffusion
For normal diffusion (a=1), Eq. (9) becomes

q,(r,1) = > e PiD Nl (x) | dr'u,, (). (10)
Q

m=0

This explicit formula yields spectral decompositions for all
the moments of the exit time T,

() = B{T}
= fx dt t*q,(r,1)

0

L (D) o
_k!mE=O —(Dlhm)kjn dr'u,,(r'). (11)

For instance, the mean exit time 7'8)(r) characterizes how
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long, on average, Brownian motion started from r spends
inside a domain () until the exit by a transfer through the
boundary ). The spectral representation (11) allows one to
write a set of Poisson equations for the moments [56]

k
A7O(r) + D—T(g]f_l)(r) =0 (reQ),
I

Aaiqi!’;)(r) +790(r)=0 (r e Q). (12)

For rotation-invariant domains, Q={r € R¢:|r|<R}, Egs.
(12) can be explicitly solved (see Appendix A), e.g.,

R*—|r|*+2AR

() —
/() = 24D,

The mean exit time linearly increases with the length A
which represents a finite permeability, reactivity or relaxivity
of the boundary.

D. Long-time asymptotic behavior

For normal diffusion (a=1), the long-time behavior of the
probability density ¢;(r,7) is dominated by the ground eigen-
state with the smallest eigenvalue A,

q,(r,t) = e‘Dl)‘O’DI)\Oug(r)f dr'ug(r’) (t— o) (13)
Q

[since A\g<\; =\, =..., the other terms in Eq. (10) are ex-
ponentially small]. The smallest eigenvalue \ fixes a char-
acteristic time (D\,)~! of the exponential decay, or “life-
time” of the ground eigenmode. The corresponding
eigenfunction uy(r) describes the dependence on the starting
point r.

For subdiffusion (a<<1), the situation is different. The
long-time asymptotic behavior of the Mittag-Leffler func-
tions with 0<a <1 is

©

(_ 1 )k—lt—ak

Ea_“z _— — ), 14
=3 iy ) (14)

from which one deduces the long-time asymptotic behavior
of a subdiffusive propagator with 0 <a <1

@ ~ S ﬂ(&)k ~ak - 14, (1) 4, (T)
G’(ro’r)_zll“(l—ak) D, ‘ mgzo DY

(t—)OO), (15)

Note that this formula does not hold for @=1. Using Eq. (8),
one gets the long-time asymptotic behavior of the density
q,(r,1) with 0<a<1,

« 1)k k k)
%mn:zfﬁiﬁxgjiﬁ? (t—). (16)

A similar asymptotic result was derived by Condamin and
co-workers for first-passage times [30]. A finite permeability,
reactivity or relaxivity of the boundary enters uniquely
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through the moments Tg)(r) for normal diffusion. The lead-

ing asymptotic term is

Tg)(l‘) & —a—1
|r(_ a’)| Da

qo(r,1) = (t— ). (17)

Although the mean exit time {7} for subdiffusion diverges,
7'8)(r) plays the role of a natural time scale for subdiffusion
inside a given domain ().

We outline two apparent distinctions between Egs. (13)
and (17). First, an expected power-law decay of the density
qq(r,1) replaces the exponential one for ¢,(r,?). Second, a
slower dynamics of subdiffusive particles implies that all the
eigenfunctions u,,(r) do determine the dependence of g, (r,1)
on the starting point r (instead of the single eigenfunction
uy(r) for normal diffusion). The spatial dependence is repre-
sented through the mean exit time 1'8)(r) which is a universal
characteristics of a confining domain (), regardless of the
exponent a.

E. Uniform starting points

If the starting point is uniformly distributed over the do-
main, the averaged exit time probability density is

(qul) = 1V fﬂ dr q.(r.1)

—i{ifs(ma)}lfd o
= -~ Bal- Al ” Qrumr ,

m=0

V being the volume of (). The long-time asymptotic behavior
is deduced from Eq. (14),

©

K —ak-1 k
=3 S B, s

with the averaged moments <7'((I;)> of the exit time for normal
diffusion,

©

2
<7§’?>E‘1—/ f dr T§]§)(r)=k!2(D17\m)_k‘l/{ J drum(r)]-
QO Q

m=0

For rotation-invariant domains, we derived an explicit for-
mula for the averaged moments in Appendix A.

F. Laplace-transformed densities

Once the Laplace operator eigenfunctions are known for a
given domain (), the spectral decomposition (9) allows one
to compute the probability density ¢,(r,7). The major diffi-
culty of spectral decompositions emerges in the short-time
limit #—0 when a very large number of eigenfunctions is
required for an accurate computation (see Sec. IV). This dif-
ficulty is particularly significant for subdiffusion because the
Mittag-Leffler functions E ,(-z) with 0 <a <1 exbihit a slow
power-law decay (14). For this reason, the Laplace transform
L of the probability density g,(r,?) is often considered,
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e}

%(l’,s)fﬁ[qa(r,f)](s)ff dt e7"q,(r.1).
0

Since the fractional derivative in Eq. (2) has a form of a
convolution, its Laplace transform is simply the product of
two Laplace transforms, namely, L:[OD}_“g(t)](s)
=s'"9L[g(1)](s). A fractional diffusion equation for g,(r,?) is
therefore reduced to a Helmholtz equation for g,(r,s). In
fact, the Laplace transform of Eq. (8) yields

Go(r,s)=1 —S,C|:J dr’Gf‘(r,r’)}(s)
Q

that allows one to write a Helmholtz equation for g,(r,s),

4G o(r,s) =D AG (r,s) =0 (r € ), (19)

Aaiqa(r,s) 4+ rs)=1 (re o). (20)

Note that the factor s appears as a fixed parameter in the
Helmholtz equation. As a consequence, its solution for sub-
diffusion (0<a@<1) can be directly derived from the solu-
tion for normal diffusion (w=1) by substituting s/D, by
s/ D,. This is an example of “subordination” meaning that
diffusion and subdiffusion differ only by “time clocks,” the
difference being expressed through s¢/D, in Laplace space.
The analysis of the exit time T, for a subdiffusive process is
therefore fully reduced to “rescaling” of the same character-
istics for normal diffusion. On one hand, one can readily use
numerous analytical results about exit times known for nor-
mal diffusion [57]. On the other hand, fast random walk
algorithms which were implemented for computing exit
times for normal diffusion in complex geometries (e.g., see
[23,58-62]), can potentially be adapted for subdiffusion.

Once a solution of Egs. (19) and (20) is found, analyti-
cally or numerically, one can formally apply the inverse
Laplace transform in order to retrieve the exit time probabil-
ity density g,(r,7). However, such a computation is techni-
cally difficult and rarely employed. In practice, one uses the
asymptotic properties of the Laplace transform g ,(r,s) in the
limit of s going to infinity in order to determine the short-
time asymptotic behavior of ¢,(r,7) (e.g., see [40,63]). In the
next section, we illustrate this technique in the case of
rotation-invariant domains.

III. ROTATION-INVARIANT DOMAINS
For rotation-invariant domains, Q={r € R?:|r| <R}, Eq.
(19) is reduced to a modified Bessel equation

¢ + d%g'@ ~g(9)=0,

where g(z) =G,(r,s) and z=|r|\s*/D,. A regular solution of
this equation satisfying the Robin boundary condition (20) is

_ o
ey = () D)

R Wd(S) ' @)

with
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W(s) = Lyn—1 (RVsID,) + ANsD 1y (R\5%ID,),
(22)

where I,(z) is the modified Bessel function of the first kind.
It is worth noting that a solution of the exterior problem
describing the probability density for target search times has
a similar form, in which I;,_;(z) and 1 ,(z) are replaced by
the modified Bessel functions K,,_;(z) and K,,_;(z) of the
second kind [64]. For a perfectly absorbing boundary
(A=0), one retrieves the results from Ref. [29].

A. Short-time asymptotic behavior

The asymptotic behavior of the Laplace transform g,(r,s)
as s goes to infinity allows one to investigate the short-time
asymptotic behavior of the exit time probability density
q,(r,t). When |r|>0, one gets as s —

- e~
7 (rs) = (M)(l 2 exp[~ (R = [r)\s/D,]

R 1-d*A —
+ Y ANs®/D,,

(23)

(the case |r|=0 and related questions are discussed in Appen-
dix B). Interestingly, the asymptotic behavior is different for
a perfectly absorbing boundary (A=0) and for a partially
absorbing boundary (A >0). Using Eq. (C5) from Appendix
C, the short-time asymptotic behavior of the probability den-
sity g,(r,7) is deduced in these two cases,

g.(r,0) = t-l(M)(l_M <o>( [ (R~ |r|)2““] m_a), @) ,
R “ 4D t* A
(24)
where
« V(2 - a) [(a2)™%y (y < o).

In both cases, the asymptotic behavior is dominated by the
exponential factor e~2~¥7 that makes the probability density
decreasing very rapidly when ¢ goes to 0.

For arbitrary bounded domain () (not necessarily rotation
invariant), it is convenient to represent the probability den-

sity g,(r,1) as

Ir - &Q|2a0‘] V=) \'Dat"‘)

s =t_1 N3 (0)<|: s
quo(r,t) =1 f,(r,t)q, 4D A

(26)

where §=|r—d()| is the distance from the starting point r to
the boundary d(), and f,(r,t) is a nonuniversal function
which depends on the shape of (). We guess that the depen-
dence of the function f,(r,7) on time ¢ cannot be stronger
than a power law in the short-time limit. In other words, the
function f,(r,?) is expected to be a correction prefactor to
the dominating exponential behavior through the universal
function qff)(z, v). In the short-time limit, rare particles can
reach the boundary, and these particles most probably arrive
at the boundary points which are the nearest to the starting
point. This argument qualitatively explains the presence of
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the distance to the boundary. A rigorous proof of this state-
ment is a challenging problem. The following argument
could be a first step toward such a proof.

Since subdiffusion is a continuous process, a particle
started from a point r inside a bounded domain () can reach
the boundary d€) of this domain only after having intersected
the sphere of radius &=|r—dQ)| which is centered at r. In
other words, the exit time 7, from the domain () is always
larger than the exit time 7', from the inscribed sphere (the
prime will denote the variables for the inscribed sphere). In
probabilistic language, it means that Q(r,7)=Q.(r,t) for
all times r>0. Since Q,(r,0)=0/(r,0)=1 and both func-
tions are smooth, the corresponding probability densities
q.(r,t) and q,(r,7) satisfy the inequality g,(r,)=gq,(r,1)
for small enough times 7. But the short-time asymptotic be-
havior of the probability density g, (r,7) for a sphere is given
by Eq. (24) with A=0 (as we consider the first intersection
with the inscribed sphere). This is an upper bound for the
probability density ¢,(r,7) for any bounded domain. Al-
though this upper bound does not prove the conjectured
asymptotic behavior of ¢,(r,?), it gives a strong argument in
favor of the dominating exponential factor in Eq. (24) for
any bounded domain.

In many cases, the correction prefactor f,(r,7) is simply
independent of time. For instance, we saw in Eq. (24) that
fae,0)=(|r|/R)1=92 (with |r| >0) for rotation-invariant do-
mains. In Sec. IV C, we compute numerically the function
folr, 1) for rectangular domains and show that it is equal to 1
for most starting points. At the same time, Eq. (B2) from
Appendix B provides an explicit example of a power-law
dependence of the function f,(r,f) on time. More generally,
one may expect that the fractal dimension of an irregular
boundary would modify the exponent of the power-law time
dependence of f,(r,7). An accurate numerical determination
of this function for irregularly shaped domains is as well a
challenging problem.

B. Uniform starting point

If the starting point r is chosen randomly with a uniform
density, one gets

d_ 1yp(R\s"/D,)
Wu(s) R\VsYD,

@)= fﬂ dr G,(r.s) =

As earlier, the asymptotic behavior of (7,(s)) as s going to
infinity is different for A=0 and A >0,

—
d&s—aﬂ (A - O)
(Gu(s)) =
d—=s7¢ A>0),
AR’ ( )

from which the short-time asymptotic behavior of the aver-
aged exit time probability density is deduced
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r((ixz) gD (h=0)

(qu1)) =

! (t)> LE&’ a—1 (A > 0) (27)
I'w)R A '

In Eq. (24) and (25), the distinction between two cases A
=0 and A >0 was difficult to grasp because the asymptotic
behavior was dominated by the exponential factor. In con-
trast, the averaging over the starting point eliminates the ex-
ponential factor and accentuates the power law in Eq. (27).
Since the particles which started closely to the boundary
reach it very fast, the averaged density {(g,(¢)) does not van-
ish (as it was the case for g,(r,7)), but diverges. This diver-
gence is faster for a perfectly absorbing boundary (A=0)
because less time is needed to exit from the domain. The
difference between the exponent a/2—1 for A=0 and the
exponent &—1 for A >0 can be used to distinguish these two
regimes from fitting experimental or simulated data. As the
assumption of infinite permeability, reactivity or relaxivity
(A=0) is often not valid, experimental results should be in-
terpreted carefully in the short-time limit. In particular, the
use of the first relation in Egs. (27) instead of the second one
may lead to erroneous determination of the exponent « from
fitting {g,(¢)) versus t. It is worth noting that the second
relation in Egs. (27) allows one to determine the length A
and to characterize the surface permeability.

Equation (27) was rigorously derived for rotation-
invariant domains. The factor d/R can be interpreted as the
surface-to-volume ratio S/V of these domains. For any
bounded domain with a smooth boundary, the short-time
asymptotic behavior is conjectured to be

I S —
=D (A=0
. T(a2) v A4=0) o8)
qda\l) =
LE&ICK—I (A > O)
I'a)V A

This behavior is well known for normal diffusion (a=1). For
subdiffusion, the valididity of these relations is checked nu-
merically for rectangular domains in Sec. IV C.

IV. NUMERICAL RESULTS

In this section, we illustrate spectral decompositions and
asymptotic results presented in previous sections. Although
the results are applicable for any bounded domain, a sphere
(d=3) is chosen as a typical example because of its rel-
evance for biological applications (e.g., as a simplified model
of a living cell). As the results for other rotation-invariant
domains [interval in one dimension and disk in two dimen-
sions] show similar features, they are not presented.

The Laplace operator eigenfunctions for a sphere are
known explicitly [65,66] that makes a numerical computa-
tion of spectral decompositions straightforward (technical
details can be found, e.g., in [40]). For progressively increas-
ing eigenvalues \,,, the Mittag-Leffler function in Eq. (5)
and its derivative in Eq. (9) decrease with m. A truncated
spectral decomposition with a finite number of terms allows
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FIG. 1. (Color online) Subdiffusive propagator G;(ry,r) for a
sphere (d=3) with @=2/3, ry=0, |[r|=0.5R, and two values A=0
(dashed blue line) and A=R (solid red line). The time scale , is
given by Eq. (C7). Circles show the short-time approximation (C8),
while crosses and triangles represent the long-time approximations
(15) truncated to two terms, for A=0 and A=R, respectively.

a numerical computation with a desired accuracy. In the case
of a sphere, 200 eigenmodes were used for computing spec-
tral decompositions in the examples shown. The radius R of
the sphere and the generalized diffusion coefficients D, were
set to 1.

The long-time asymptotic behavior [Eq. (15)] of the exit
time probability density ¢,(r,7) involves on the moments
Tg)(r) for a sphere. Their computation is described in Appen-
dix A (in practice, the set of linear equations (A3) was writ-
ten in a matrix form and then solved numerically).

A. Subdiffusive propagator

Figure 1 shows the time dependence of the subdiffusive
propagator Gy(ry,r) for a sphere (d=3), with @=2/3 as an
arbitrary example. The subdiffusive propagator exhibits a
maximum at time ¢ which is close to the time scale 7, from
Eq. (C7). This time scale, which is set by the distance be-
tween the points rj and r, is used to normalize the time .

The asymptotic formula (C6) accurately approximates the
subdiffusive propagator in the short-time limit, for both a
perfectly absorbing boundary (A=0) and a partially absorb-
ing boundary (with A=R as an example). In the case pre-
sented, the starting point r,=0 and the arrival point |r|
=0.5R are far from the boundary, so that the boundary con-
dition (the value of A) is irrelevant. In fact, particles do not
have enough time to “feel” the presence of a boundary in the
short-time limit. A different behavior is expected when either
of two points ry and r (or both) is close to the boundary.
There is a small discrepancy between the spectral decompo-
sition (5) and the asymptotic formula (C6) at very small
times (#/1,<<0.01). In this time range, the spectral decompo-
sition of the propagator with 200 eigenmodes is inaccurate.
In turn, the asymptotic formula (C6) is getting more and
more accurate for smaller times, providing thus a way for
evaluating the subdiffusive propagator in this case.

The asymptotic formula (15) truncated to two terms accu-
rately approximates the subdiffusive propagator in the long-
time limit. We checked that a single term was not enough for
getting accurate results, while the use of three, four, etc.
terms was not relevant in practice.
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FIG. 2. (Color online) The exit time probability density g,(r,?)
for a sphere (d=3) with @=2/3 and |r|=0.25R (top: A=0; bottom:
A=R). Pluses and circles show respectively the short-time approxi-
mation (24) and long-time approximation (16) truncated to three
terms. The time scale is set by taking R=1 and D,=1.

B. Exit time probability densities

Figure 2 shows the time dependence of the exit time prob-
ability density ¢,(r,7) for a sphere, with @=2/3 and
Ir|=0.25R, for a perfectly absorbing boundary (A=0) and a
partially absorbing boundary (A=R). The spectral decompo-
sition (9) is compared to its short-time approximation (24)
and long-time approximation (16), the latter being truncated
to three terms. Both approximations are accurate in their
ranges of applicability.

Figures 3-5 illustrate how the time dependence of the exit
time probability density for a sphere varies with three rel-
evant parameters: the exponent «, the starting point r and the
length A. As expected, a decrease of « yields a broader prob-

10

107

q ()

10+

10

FIG. 3. (Color online) The exit time probability density g,(r,?)
for a sphere (d=3), with A=0, |r|=0.25R and different values of a.
The time scale is set by taking R=1 and D,=1.
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FIG. 4. (Color online) The exit time probability density g,(r,?)
for a sphere (d=3), with A=0, @=2/3 and different values of
r=|r|/R. The time scale is set by taking R=1 and D,=1.

ability density for the exit time, with a smaller typical time
(the maximum is shifted to the left) (Fig. 3). When r=|r|/R
increases, the starting point r becomes closer to the bound-
ary, and the time needed to exit from the domain decreases.
The probability density is thus shifted to smaller times (Fig.
4). Finally, an increase in A makes the boundary less perme-
able that increases the exit time. In this case, the exit time
probability density is also getting broader (Fig. 5).

C. Rectangular domains

In order to justify the applicability of the asymptotic re-
sults for nonspherical domains, we also consider subdiffu-
sion in a rectangular domain of size b, X b,. Although the
computations were realized for different rectangular do-
mains, we only present the results for the unit square with
b,=by,=1. As for rotation-invariant shapes, the Laplace op-
erator eigenbasis is known explicitly,

unk(x7y) = un(x)uk(y)? )\nk = )\n + )\k7

where u,(x) and \, are the Laplace operator eigenfunctions
and eigenvalues for the unit interval [66]. The computation
of the exit time probability density through Eq. (9) is
straightforward (technical details can be found in [40]).
Figure 6 shows the exit time probability density g,(x,y,?)
for the unit square [0,1]X[0,1], with a=2/3, x=0.2,
y=0.4 as an arbitrary example, and two values of A: A=0

1 —AR=0
10 ---A/R=0.1]|
-~ AR=1
= 10
)
(o
107}
1
1y
’Io
5 ':I
10 :
10" 10°  10° 10" 10° 10’ 10°

FIG. 5. (Color online) The exit time probability density g,(r,?)
for a sphere (d=3), with @=2/3, |r|=0.25R and different values of
A. The time scale is set by taking R=1 and D,=1.
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(a)
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FIG. 6. (Color online) Top: The exit time probability density
qo(x,y,r) for the unit square [0,1]X[0,1], with @=2/3, x=0.2,
y=0.4, and two values of A: A=0 (blue circles) and A=1 (red
squares). The time scale is set by taking D,=1. The solid lines
show the short-time asymptotic formula (26) with f,(x,y,f)=1, the
dash-dotted lines show the long-time asymptotic formula (16) that
includes two terms. Bottom: the correction prefactor f,(x,y,?) in
Eq. (26). The solid blue line and the dash-dotted red line correspond
to A=0 and A=1, respectively. Noisy variations around 1 at very
small times are related to the computational inaccuracy of the spec-
tral decomposition (see the text).

(perfectly absorbing boundary) and A=1 (partially absorbing
boundary). The asymptotic formulas (26) and (16) accurately
describe the behavior of the density ¢,(x,y,?) at short and
long times, respectively. The bottom plot of Fig. 6 shows the
correction function f,(x,y,f) which is computed from Egq.
(26). This function approaches 1 at short times. Noisy varia-
tions around this limit are related to the computational inac-
curacy of the spectral decomposition (9) at very small times.
In fact, one is trying to compute a very small probability
q.(x,y,t) by summing a very large number of terms which
are slowly decreasing with m (roughly speaking, they are all
in the order of 1). The round-off errors make such a compu-
tation inaccurate, and the spectral decomposition becomes
useless at very small times. In turn, the asymptotic formula
(26) is getting more and more accurate when the time de-
creases.

Note that when x=y or x=1-y, the function f,(x,y,?) is
found to be approaching 2, while for x=y=0.5, it converges
to 4. At short time, rare subdiffusing particles reaching the
boundary most probably arrive at the nearest boundary
points. For a general location of the starting point, there is
only one nearest boundary point. When x=y or x=1-y, there
are two nearest points, while for x=y=0.5, there are four
nearest points. Since the arrivals of subdiffusing particles on

PHYSICAL REVIEW E 81, 021128 (2010)
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FIG. 7. (Color online) Top: The averaged exit time probability
density {(q,(2)) for the unit square [0,1]X[0,1], with @=2/3, and
two values of A: A=0 (solid blue line) and A=1 (dashed red line).
The time scale is set by taking D,=1. The dash-dotted lines show
the short-time and long-time asymptotic behaviors according to
Egs. (28) and (18), the latter including two terms. Bottom: The
averaged exit time probability density (g,(¢)) (shown by squares)
which is normalized by the leading asymptotic term from Eq. (28),
with S/ V=4 for the unit square. The lines show a linear fit indicat-
ing the order of correction terms to Eq. (28).

the boundary are rare events, they can be approximately con-
sidered as independent. The increase in chances for reaching
the boundary is thus reflected in the supplementary factors 2
or 4 for the exit time probability density.

Similar reasoning may explain qualitatively the presence
the factor f,(r,f)=(|r]/R)'~¥"? for rotation-invariant do-
mains with d>1. When the starting point r approaches the
origin (|r| goes to zero), the set of equidistance points from r
(i.e., the sphere of radius R—|r| which is centered at r) be-
comes closer and closer to the spherical domain (i.e., the
sphere of radius R which is centered at 0). The consequent
increase in the number of boundary points which can be
reached by rare subdiffusing particles within a short time, is
represented by increasing function f,(r,7). When the par-
ticles start from the origin (|r|=0), all the boundary points
are equivalent that drastically changes the function f,(r,?)
according to Eq. (B2).

Figure 7 shows the averaged exit time probability density
(qo(1)) for the unit square, with @=2/3 as an arbitrary ex-
ample, and two values of A: A=0 (perfectly absorbing
boundary) and A=1 (partially absorbing boundary). The
short- and long-time asymptotic formulas (28) and (18) are
shown for comparison. As expected, the exponent of the
power-law decay in the long-time limit is independent of A.
The boundary permeability only affects the mean exit time
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<7'8)> for normal diffusion which stands as a prefactor (a shift
along the y axis on the logarithmic scale). In the short-time
limit, Eq. (28) accurately describes the behavior of (g,(7))
with the exponents @/2—1 for A=0 and a—1 for A=1. On
the bottom plot of Fig. 7, the density {(g,(¢)) is normalized by
its asymptotic form according to Eq. (28). A linear depen-
dence of this ratio on t¥? explicitly gives the order of the
leading correction term to Eq. (28), while its extrapolation to
1 as t— 0 confirms the accuracy of the prefactor in Eq. (28).
For instance, the leading correction term in the case A=0 is
t®!, and it diverges as t goes to O for a<1. Similar results
were obtained for other rectangular domains (not presented).
In particular, the presence of the surface-to-volume ratio in
the short-time asymptotic formula (28) was confirmed.

V. CONCLUSION

The exit time of a subdiffusive process from a bounded
domain with a partially absorbing/reflecting boundary was
studied in detail. For an arbitrary bounded domain, an exact
spectral decomposition was derived for the exit time prob-
ability density. Its asymptotic approximations in the short-
time and long-time limits were investigated. A numerical
computation confirmed the accuracy of these approxima-
tions. For rotation-invariant domains (e.g., a sphere), exact
explicit formulas were given for the Laplace transform of the
probability density. The long-time behavior of the probability
density was governed by the moments of the exit time for
normal diffusion. In the short-time limit, the exit time prob-
ability density which is averaged over uniformly chosen
starting point, exhibited a power-law decay with the expo-
nent a/2—1 for a perfectly absorbing boundary (A=0) and
the exponent a—1 for a partially absorbing boundary
(A>0). In the former case (A=0), the surface-to-volume
ratio S/V can be extracted from fitting experimental data. In
the latter case (A >0), the prefactor (S/V)(D,/A)=W,S/V
in Eq. (28) is independent of the diffusion coefficient D,,.
Since particles can start infinitely close to the boundary, this
is the permeability W, which limits the transfer of particles
in the short-time regime. This asymptotic behavior of {g,())
may potentially be used in order to determine the underlying
surface permeability, reactivity or relaxivity from fitting ex-
perimental data.

It is worth noting that the assumption of a perfectly ab-
sorbing boundary is often not justified, and the consequent
“choice” of the first relation in Eq. (28) may lead to errone-
ous determination of the exponent a and the surface-to-
volume ratio. This observation is relevant for studies of sub-
diffusion inside a living cell with a semipermeable
membrane, in a chemical reactor filled with catalytic grains
of finite reactivity, or in mineral or biological samples which
are probed by nuclear magnetic resonance measurements
subject to surface relaxation.
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APPENDIX A: MOMENTS OF THE EXIT TIME FROM
ROTATION-INVARIANT DOMAINS FOR NORMAL
DIFFUSION

We calculate the moments Tg)(r) = E{T%} of the exit time
T, from a rotation-invariant domain for normal diffusion
started from r. The rotational invariance implies that Tg{)(l‘)
is a function of the radial coordinate r so that Eqs. (12)
become

& d-1d k
(ﬁ* : ;>T§§>(r)+517§§ =0, (A
A(—Tg’;)(r)) + 78 (R) = 0. (A2)
r=R

A solution of these equations is searched in the form
k
) = k£ aj(»k)(r/R)zj,
j=0

where T():RZ/ D, is a diffusion time scale, and aj(-k) are un-
known coefficients to be determined. The substitution of this
form into Eq. (A1) yields a set of recurrent relations for the
coefficients aﬁ»k),
(k=1)
W__ Y

A= e ds) (G=1...k).

Applying repeatedly this relation, one gets
aP=bal™ (j=1...k),

where
- Y (j>0)
by=12jld(d+2)...[d+2(j - 1)] ’
1 (j=0).
In turn, Eq. (A2) implies
I k
af’ == 2 (2jA/R+ 1)al) == X 2jA/R + D)bjalf ™.
j=1 j=1

Since 78)(1'):1, the initial relation a}o)zéjp allows one to

solve the above set of linear equations which can also be
rewritten as

k-1
> cja(()k_j) =—c, (A3)
=0

where ¢;=(2jA/R+1)b; (j=0...k). A recursive computation
or a matrix inversion are efficient ways for finding a numeri-
cal solution of this system. Given the particular structure of
these equations, the following explicit solution can also be

derived,
. i+ )
(k) _ i+ . i (ll k i
ay’ = > (=1 k I
i+, rkig=k, L U
i1=0...i,=0

For instance, one has
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a(()l)=—cl,
agz) =—cy+ci,
a(03) =—c3+2cic;— c?,
a{f) =—cy4+2cic3— 3c%02 + c% + c‘]‘.

The kth moment of the exit time is therefore

R2\K k
() = ( ) Eba<k-')(|r|/1e)2/. (A4)

Taking r=0, we find

R2 k

that gives a physical interpretation for the coefficients a(k) It
the starting point is uniformly distributed over the domain,
one gets

1 R ‘s bal™
(rhy = —f drr)(r) = k'd( ) >
\% Q D j=0 2]+d

APPENDIX B: SHORT-TIME ASYMPTOTIC BEHAVIOR
OF THE EXIT TIME PROBABILITY DENSITY

In Sec. IIT A, we considered the short-time asymptotic
behavior of the exit time probability density ¢,(r,7) and de-
rived the asymptotic results (23) and (24) in the case
[r|>0. Both equations (23) and (24) formally diverge at
|r|=0, although this point might seem to be “ordinary” from
a probabilistic point of view. In this Section, we clarify this
“paradox.”

The analysis relies on the asymptotic behavior of the
Laplace transform g,(r,s) from Eq. (21) as s goes to infinity.
In this limit, one gets Rys*/D,> 1 so that Eq. (22) becomes

R\““s”/Da _ g2
— (1+1 dé+A\,s“/Da).
V4m(R%:%/(4D )4 8 R
If |r|\s*/D,>1, one derives Eq. (23).

However, if |r|=0 (or very small), the condition
Ir|\s*/D,>1 cannot be satisfied. In this case, Eq. (21) be-
comes

Wd(S) =

_ 1 RZ a\ (d-2)
909 = T W) ( 4Da> :

The above asymptotic formula for W,(s) then yields

/4_ R25%\ (-4 e—R\s“s“/Da
i (e

NaTT
'(d/2)\ 4D, 2

A —
E + A\s's”‘/Da

for s — 0. Using Eq. (C5) from Appendix C, we deduce the
short-time asymptotic behavior of the probability density
q.(0,1) for a perfectly absorbing boundary (A=0) and for a
partially absorbing boundary (A >0)
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24! { ( R2a® )1/(2—01)]
———=¢exp| -2 -«
Ldn2)N2 -« P~ ) 4D t*

q,(0,1) =

R2a® \d120-a)]
a1/2(4D“ta> (A=0),
2 _a )\ (d-a)[2(2-a)] D 1@
a(l—a)/z(_fD“ ) Lol (A>0).
Déta
(B1)

A comparison with the asymptotic formula (26) yields the
correction prefactor f,(r,1)

(B2)

RZaa (d-1)/[22-a)]
fal0,1) = —

I(d/2) ( 4D 1

that provides an explicit example of a power-law dependence
of f,(r,f) on time. As we already mentioned in Sec. IV C,
the point r=0 is indeed special in the short-time limit be-
cause all the boundary points are equidistant from the origin.
This leads to an abrupt change of the function f,(r,7) from
(Jr|/R)=972 to Eq. (B2).

This situation can be illustrated in the case d=1, for
which Egs. (24) and (B1) yield f,(x,1)=1(x>0) and
f2(0,1)=2. How is it possible that the probability density
q,(r,t) follows Eq. (24) for any |r|>0 and then “jumps”
abruptly to a twice higher value at |r|=0? The explanation is
actually simple. For d=1, the explicit form of g,(r,s) yields
as s—

o~ (R D, (R+[x|)\s¥/D,,

ate”
1+ AVsD,

qo(r,s) =

When |r| >0, the second exponential term becomes less and
less significant, in comparison to the first one, as s increases.
In the limit s — o0, the second term can be neglected, and one
retrieves Eq. (23). When |r|=0, the two terms are identical
that gives the supplementary factor 2 in Eq. (B1). For small

two terms are relevant. If we keep these two terms, the short-
time asymptotic behavior is

o ([ xstire] e
qor,0) =11 ¢" 1D Y

e 4D ,1* A ’

APPENDIX C: FREE SUBDIFFUSIVE PROPAGATOR

The properties of the free subdiffusive propagator
G*™(r,,r) for the whole space R have been reported in
the literature (e.g., see [67-69]). We summarize several rela-
tions which are useful for studying the asymptotic behavior
of the exit time probability density.

The Laplace transform £ in time ¢ and the Fourier trans-
form F in position r reduce Egs. (1) and (3) to a linear
equation which has an exact explicit solution,
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a—l

FLIGH™(rp 1) ()} (k) = 02 R

The inverse Fourier transform of this function is

K- (” Vs Da)

)d/2—1 ’

LIGE™(rg,1)](s) = B
r\s“/D,,

1
WS_I(SQ/DQ)WZ

(CD)

where K,(z) is the modified Bessel function of the second
kind, and r=|r-r| is the distance between points r and r. It
may be useful to rewrite this formula explicitly for
d=1,2,3,

a2-1

( [ a/D )
=—¢exp(=rVs“D,),
2\D,

a-1

2@D,,
sa—l

L 4D r

N

LIGH™(r,r)](s) = S Ko(r\s*/D,), (C2)

exp(—rvs¥D,).

The subdiffusive propagator G*™(ry,r) is formally ob-
tained by the inverse Laplace transform of the right-hand
side in Eq. (C1) which can be expressed in terms of a Fox

PHYSICAL REVIEW E 81, 021128 (2010)

H-function [70]. For practical purposes, explicit asymptotic
behaviors at short and long times are often more appropriate
than using a formal solution with H-functions. The long-time
behavior corresponds to the limit of E[Gf”free(ro,r)](s) as s
goes to 0. It can be obtained from a Taylor series expansion
of the modified Bessel function and term-by-term computa-
tion of the inverse Laplace transforms of powers of s.

The short-time behavior of the free subdiffusive propaga-
tor corresponds to the limit of E[G;"free(ro,r)](s) as s goes to
infinity. In this limit, Eq. (C1) becomes

gl ( § )(d+1)/4 e—rv‘s“/Da
22 71_)(d—l)/z D, Ad=D72 -

(C3)

LIGE™ (rg,1)](s) =

The Laplace method (or, more generally, the saddle-point
method) [48] allows one to derive the asymptotic behavior
(C4) of the function L[ Ye™ ’B](s) as s goes to infinity (here
B, vy and ¢ >0 are fixed numbers). Substitution of 3, y and ¢
by new parameters «, x and r leads to another form (C5) of
the same relation. A comparison of this form to Eq. (C3)
suggests to take k=(d+1)/4—1 in order to derive the short-
time asymptotic behavior (C6) of the free subdiffusive
propagator.

L:[t—ye—c/tﬁ](s) =~ 1 /%(Igc)(l—Zy)/[Z(ﬁﬂ)]S(2y—,3—2)/[2(ﬁ+1)] exp[— SB/(BH)Cl/(ﬁ+l)(’31/(ﬁ+1) + B—B/(BH))]_ (C4)
+
a,K+1/2 r2a,uz (k+1/2)/(2-a) V o 1/(2-a)
l[s,K —r\s /Da] t) ~ / - [_(K"'l) exp| - (2 — a) . (CS)
V(2 — ) \ 4Dyt 4D 1
(da-1)/2 |r -r |2aa —d(1-a)/[2(2-a)] |l' -r |2aa 1/(2-a)
G (ry,r) = 47D 1 -d/z(—o exp| -2 - a)| ——— : C6
¢ (ro,r) \ﬂm( o) 4D 1" p|—( ) 4D 1 (Co)
I
For completeness, we note that the inverse Laplace transform e Ir — |
L[5 Vs"Pa](r) can be written exactly in the form of a G (ro,r) = (47TD11)4/2€XP " 4Dy |

series [71]

L l[sxe—r\v /D ](t)

1 % sin[ m(k + na/2) [T (1 + k + na/2)

,n_t1+K

n=0 n!
( \’Data ) .
X|=—— .
r

However, this representation is only efficient in the long-time
limit.

Several comments are in order:

(i) For normal diffusion (a=1), Eq. (C6) is reduced to the
Gaussian propagator

which is applicable for any time ¢ (not only in the short-time
limit).

(ii) When a <1, the stretched-exponential behavior (C6)
is not exact, but approximate for short times. Note that cor-
rection terms in fractional powers of # may be significant if ¢
is not small enough.

(iii) The asymptotic result (C6) is derived for fixed r,, and
r. When r approaches r(, the subdiffusive propagator di-
verges, in contrast to the case of normal diffusion. Note that
the exact Egs. (C2) also diverge as r approaching r
(or r—0) for d=2 and d=3 even for normal diffusion
(a=1). These issues were already discussed in the literature
(e.g., see [54]).
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(iv) The free propagator for subdiffusion on a line, in
half-space and in a box, as well as the related boundary value
problems were studied by Metzler and Klafter [69]. In par-
ticular, they discussed the representation of the propagator in
terms of Fox-functions and the short-time asymptotic behav-
ior [Eq. (C6)] for d=1.

(v) The approximate formula (C6) reaches a maximum at
time #, which may serve as an appropriate time scale

202 — 2-a)/a e 2\ Ve
. a(ﬂ) (M e
d 4D,

This time scale was used for plotting Fig. 1.

(vi) In the short-time limit, particles have no enough time
for exploring the space so that a subdiffusive propagator for
a bounded domain can be approximated by that for the whole
space. Eq. (C6) provides therefore the short-time asymptotic
behavior for a general spectral decomposition (if the both
points r, and r are not close to the boundary)

o0

D Eo(= DNyt (ro)n, (r) = GE™(ro,x).  (C8)

m=0
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(vii) This relation is useful for theoretical and numerical
computations at short times because a slow convergence may
prohibit using spectral decompositions.

(viii) As a corollary, one can calculate the probability for
a particle to be found at time ¢ inside a sphere of radius R
around the starting point

H&ﬂzf dr G0, r).
{reR%|r|<R}

In the short-time limit, the use of Eq. (C6) yields

1 ( RZaa )(d—Z)/[2(2—a)]
C(d2)Va(2 — a) \ 4D 1"

( R2a® )1/(2—@
Xe -2- .
xp| = (2 - ) 4D 1

Note that this probability is different from the survival prob-
ability for a sphere because particles can leave the sphere and
then return to it up to time ¢.

P(R,f)=1-
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